
Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

193

Advanced Game Logic

5	 Advanced Game Logic
Introduction

In chapter 3, we learned some basic mechanics that lots of games need. We continue in this chapter
with even more mechanics and learn how to program them. The topics introduced in this chapter have
been delayed until we discuss physics simulation and collision detection, since these topics depend on
detecting collisions. For instance, it does not make sense to discuss doors and locks if these doors do
not block player’s movement.

After completing this chapter, you are expected to:

-- Make doors, locks, and keys
-- Program simple puzzles and unlock combinations
-- Program player’s health, lives, and score
-- Program different types of weapons with ammo and reload mechanism

5.1	 Doors, locks, and keys

In this section we are going to discuss two types of doors: rotating doors and sliding doors. Rotating
doors are just like ordinary doors we usually see: they rotate around y axis and their rotation axis is on
the left or right end of the door. On the other hand, sliding doors usually move in one dimension (right,
left, or up) just like elevator doors.

Let’s begin with rotating doors. To implement such doors with ease, we can use a new physics component
called Hinge Joint. This component is specific for object that have limited freedom of movement, such
as doors. To begin, we can create a simple room with floor and four walls; where one of these walls
leads outside through a door opening. In this opening we locate our door like in Illustration 76. After
that, we need to add a rigid body component to the door and configure it as in Illustration 77. Notice
that we increase both drag and angular drag to make the door movement speed reasonable (otherwise
it will feel too light).

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

194

Advanced Game Logic

Illustration 76: A room with a basic rotating door

Illustration 77: Rigid body configuration of the rotating door

Finally, we need to add the hinge joint component to the door and configure it according to Illustration
78. Hinge joint is a physics component that is affected by external forces. Therefore, we will not need to
press any keyboard key or mouse button to open the door. Alternatively, we have to exert a force with
an appropriate magnitude.

The Hinge Joint component can be found in Component > Physics > Hinge Joint menu item.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

195

Advanced Game Logic

Illustration 78: Configuring hinge joint component to create a rotating door

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

196

Advanced Game Logic

As you see, this is a relatively large component with lots of options to deal with. However, we are interested
in some options that allow us to get the desired functionality. Anchor and Axis values specify the position
and direction of the rotation axis. Since we are making a rotating door, the axis need to be on the side.
If you consider z size of the door as its thickness, and x size of the door as its width, then the position
of the rotation axis is (0.5, 0, 0), which is the right end of the door. Similarly, the direction of this axis
needs to be (0, 1, 0), so that the axis goes along y axis. The second change we need is activating Use
Spring, which generates a force that returns the door to its original position when there are no external
forces affecting it. The related Spring and Damper values must be appropriately set, so they are neither
too strong nor too weak. The values you see in Illustration 78 have been configured to be appropriate
for the physics character we created in section 4.3. Finally, we have to activate Use Limits, in order to set
maximum and minimum degrees of door rotation. In this case, we make a bi-directional rotating door
that rotates 180 degrees. In other words, the door can be pushed from both sides and rotates up to 90
degrees. You may add a physics character with first person control to test the door.

Now we are going to lock this door and create a key. The player must posses this key in order to open
the door and pass through. The key is going to be collectable and, when collected, is going to be added to
the inventory box of the player. Therefore, we need a script similar to Collectable script we have created
earlier (Listing 26 page 76), in addition to InventoryBox (Listing 29 page 79). For this latter script, we
have to add a list to store the keys that the player has. These keys are simply strings. The modified version
of InventoryBox is shown in Listing 61.

1.	 using UnityEngine;

2.	 using System.Collections.Generic;

3.

4.	 public class InventoryBox : MonoBehaviour {

5.

6.	 //How much money does the player have?

7.	 public int money = 0;
8.

9.	 //What keys does the player have?

10.	 public List<string> keys;

11.

12.	 void Start () {

13.

14.	 }

15.

16.	 void Update () {

17.

18.	 }

19.	}

Listing 61: The modified version of InventoryBox script

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

197

Advanced Game Logic

The mechanism we are going to use is the following: each key has a “secret text” that must be unique,
and this text can be used to open all doors that are locked with the same secret text. The list keys in
InventoryBox stores secret texts of the keys that player currently has. Now we have to 1) create a collectable
key that gives the player the secret text, and 2) create a lock that prevents door from opening until the
secret text is provided by the player.

Let’s begin with the collectable key: we need to build a new collectable/collector mechanism, but this time
we are going to make use of collision detection. Therefore, we do not need to iterate over all collectables
in the scene and measure their distances like we did in section 3.2. Alternatively, we simply create a key
script that responds to Collect message by giving the collector (owner) a new key in a form of secret text.
Listing 62 shows CollectableKey script which implements the described function.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class CollectableKey : MonoBehaviour {

5.

6.	 //Key to give to the player

7.	 public string key;

8.

9.	 void Start () {

10.

11.	 }

12.

13.	 void Update () {

14.

15.	 }

16.

17.	 //Receive collect message

18.	 public void Collect(GameObject owner){
19.	 //Find the inventory box of the owner

20.	 //Give the key to the owner by adding it

21.	 //to the list of keys the owner has

22.	 InventoryBox box = owner.GetComponent<InventoryBox>();
23.	 if(box != null){
24.	 box.keys.Add(key);

25.	 //Finally, destroy the key object

26.	 Destroy (gameObject);
27.	 }

28.	 }

29.	}

Listing 62: A script for collectable key that gives the collector a secret text

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

198

Advanced Game Logic

What does the script simply do is to verify that owner has an inventory box. If this is true, it adds the
secret key stored in key variable to the list of keys in the inventory box (box.keys). Finally, the collectable
key is destroyed and removed from the scene, which is important to give the player the impression that
he has already collected the key. The question now is: how the player is going to collect the key? The
answer might vary depending on the situation: he might simple pick it from the floor, or it can be given
to him by another character in the game, and so on. Generally, any event that ends by sending Collect
message to key object and providing player’s character as owner will eventually give the player the key.
In our case, we simply collide with the key object and collect it. Consequently, we need a script that
sends Collect message upon collision between the player and the key. This script is CollisionCollector
shown in Listing 63.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class CollisionCollector : MonoBehaviour {

5.

6.	 void Start () {

7.

8.	 }

9.

10.	 void Update () {

11.

12.	 }

13.

14.	 //Collect the collectable on collision

15.	 void OnCollisionEnter(Collision col){
16.	 SendCollectMessage(col.gameObject);
17.	 }

18.

19.	 //Collict on trigger hit

20.	 void OnTriggerEnter(Collider col){
21.	 SendCollectMessage(col.gameObject);
22.	 }

23.

24.	 void SendCollectMessage(GameObject target){
25.	 //Send collect message to the colliding object.

26.	 //Provide self as owner of what is to be collected

27.	 target.gameObject.SendMessage("Collect",
28.	 gameObject, //owner
29.	 SendMessageOptions.DontRequireReceiver);
30.	 }

31.	}

Listing 63: Collector script based on collisions

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

199

Advanced Game Logic

This script handles the two types of possible collisions by handling OnCollisionEnter and OnTriggerEnter
messages. Consequently, it sends Collect message to the colliding object and provides itself as the owner.
This results in a generic collecting script that can collect any object as long as it handles Collect message,
and not only keys. Before carrying on, it is a good idea to revise the list of scripts we need: we will use
a PhysicsCharacter with FPSInput. These two scripts should be attached to capsule that represents the
character and has the camera added as a child. In order to collect collectables, we need both InventoryBox
and CollisionCollector scripts. Now we have to make an object that resembles the key we need to collect,
and add the CollectableKey script to it. For example, you can make a simple key shape like in Illustration 79.

Illustration 79: A simple key shape to be used as collectable key object

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

200

Advanced Game Logic

After attaching CollectableKey script to the key object, we need to specify the secret text that uniquely identifies
the key/lock pair and type the value in key field. For this example I use “door1”. When the player character
collides with this key, the value door1 will be added to keys list inside InventoryBox. To complete the demo,
we need to add a lock to our door. Remember that we have used Hinge Joint component to create the door,
which makes door movement under the control of physics simulator. Therefore, to lock the door we need to
freeze its position and rotation. This task is performed by PhysicsDoorLock script shown in Listing 64.

1.	 using UnityEngine;

2.	 using System.Collections.Generic;

3.

4.	 public class PhysicsKeyLock : MonoBehaviour {

5.

6.	 //Unique string to unlock this lock
7.	 public string unlockKey;

8.

9.	 void Start () {

10.	 Lock ();

11.	 }

12.

13.	 void Update () {

14.

15.	 }

16.

17.	 //Lock the key by setting the rigid body to kinematic

18.	 public void Lock(){

19.	 rigidbody.isKinematic = true;
20.	 }

21.

22.	 //Try to unlock using the provided keys

23.	 public void Unlock(ICollection<string> keys){

24.

25.	 if(!rigidbody.isKinematic){

26.	 return;

27.	 }

28.

29.	 //If one of the keys match, then unlock

30.	 foreach(string key in keys){

31.	 if(unlockKey.Equals(key)){
32.	 //Tell other scripts that unlocked succeded

33.	 SendMessage("OnUnlock",
34.	 SendMessageOptions.DontRequireReceiver);
35.

36.	 rigidbody.isKinematic = false;
37.	 return;

38.	 }

39.	 }

40.

41.	 //Tell other scripts that unlocking has failed

42.	 SendMessage("OnUnlockFail",
43.	 SendMessageOptions.DontRequireReceiver);
44.	 }

45.	}

Listing 64: A script to lock physics door with provided string unlock key

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

201

Advanced Game Logic

By setting isKinematic property of rigidbody to true, the script tells the physics simulator that no external
force can alter the position or rotation of the door. Nevertheless, the door must still be able to collide and
block other objects. The script starts by calling Lock() function, which in turn sets rigidbody.isKinematic
value to true. Anyone tries to unlock the door must provide a collection of strings (keys) that he has.
If one of these keys matches unlockKey, the door is unlocked. Notice that we use ICollection generic
list, which is the most generic type of collections available. As a result, the function can be called using
List<string> or string[] without problems. The value of rigidbody.isKinematic determines whether the door
is locked or not. If the door is already unlocked, the value is false. If the door has not yet been unlocked,
every key in the provided keys collection is compared with unlockKey. If a match is found, the door is
unlocked by resetting rigidbody.isKinematic back to false. Before that, the script informs other scripts
about unlock by sending OnUnlock message. However, if none of the provided keys matches unlockKey,
the function returns without unlocking the door and sends OnUnlockFail.

All we have to do now is to attach the script to the physics door we’ve made and set its unlockKey to
“door1”, so that it matches key value of the collectable key. The final step is to initialize unlock attempt.
One of the options is to try to unlock the door when the player character touches it. To implement
this option, we have to write a script that handles collision between player character and the door and
eventually try to unlock the door. This script is TouchUnlocker shown in Listing 65.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class TouchUnlocker : MonoBehaviour {

5.

6.	 void Start () {

7.

8.	 }

9.

10.	 void Update () {

11.

12.	 }

13.

14.	 //Send unlock message to colliding object

15.	 void OnCollisionEnter(Collision col){
16.	 //Get the inventory box

17.	 InventoryBox box = GetComponent<InventoryBox>();
18.

19.	 //Try all keys in the inventory box with the lock

20.	 col.gameObject.SendMessage("Unlock",
21.	 box.keys, //Colletion of keys to try

22.	 SendMessageOptions.DontRequireReceiver);
23.

24.	 }

25.

26.	}

Listing 65: A script that tries to unlock the door when the player touches it

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

202

Advanced Game Logic

Whenever the player collides with an object, this script send Unlock message to that object and provides
it with the list of keys stored in player’s inventory box. If the colliding object is a locked door, it will try
all provided keys to unlock itself. However, if the colliding object is not a door, the message is simply
ignored and nothing evil happens. In scene20 in the accompanying project, you can find two functional
rotating doors: unlocked and locked with a collectable key.

The second type of doors we are going to implement is sliding door. This time we use a custom script
instead of a physics component to implement the desired door movement. The generic functionality this
script has to provide is moving the door along its local x axis. However, to make a real door, we need to
do more than that. First of all, we need to provide the functionality of a generic door, such as opening,
closing, locking and unlocking. In the case of rotating door, hinge joint properties did the job for us. We
need, however, to do handle these situations by ourselves now. Therefore, we need GeneralDoor script
that represents an abstract door, regardless of the actual way of opening and closing it. This script is
shown in Listing 66.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

203

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections.Generic;

3.

4.	 public class GeneralDoor : MonoBehaviour {

5.

6.	 //Is the door initially open?

7.	 public bool initiallyOpen = false;
8.

9.	 //Key to unlock the door

10.	 public string unlockKey;

11.

12.	 //Internal state storage

13.	 bool isOpen;
14.

15.	 //Internal state of lock

16.	 bool locked;

17.

18.	 void Start () {

19.	 //Lock the door if there is an unlock key provided

20.	 locked = !string.IsNullOrEmpty(unlockKey);
21.	 //Set the initial state of the door

22.	 isOpen = initiallyOpen;
23.	 }

24.

25.	 void Update () {

26.

27.	 }

28.

29.	 //Open the door if not locked
30.	 public void Open(){
31.	 if(!locked){

32.	 isOpen = true;
33.	 }

34.	 }

35.

36.	 //Close the door if not locked

37.	 public void Close(){

38.	 if(!locked){

39.	 isOpen = false;
40.	 }

41.	 }

42.

43.	 //Lock the door

44.	 public void Lock(){

45.	 locked = true;
46.	 }

47.

48.	 //Try to unlock the door using provided keys

49.	 public void Unlock(ICollection<string> keys){

50.	 //Check if it already unlocked

51.	 if(!IsLocked()){

52.	 return;

53.	 }

54.	 //Try all keys to unlock the door

55.	 foreach(string key in keys){

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

204

Advanced Game Logic

56.	 if(key.Equals(unlockKey)){
57.	� //Tell other scripts that the door has been unlocked

58.	 SendMessage("OnUnlock",
59.	 SendMessageOptions.DontRequireReceiver);
60.

61.	 locked = false;
62.	 return;

63.	 }

64.	 }

65.	 //Tell other scripts that unlocking failed

66.	 SendMessage("OnUnlockFail",
67.	 SendMessageOptions.DontRequireReceiver);
68.	 }

69.

70.	 //Is the door currently locked?

71.	 public bool IsLocked(){

72.	 return locked;

73.	 }

74.

75.	 //Is the door currently open?

76.	 public bool IsOpen(){
77.	 return isOpen;
78.	 }

79.

80.	 //Switch the state of the door

81.	 public void Switch(){

82.	 if(IsOpen()){
83.	 Close();

84.	 } else {

85.	 Open();
86.	 }

87.	 }

88.	}

Listing 66: A script that handles basic functions of a door regardless of the actual implementation of these functions

You might have noticed that this script internally handles the state of the door, and provides public
functions to check or modify this state. All functions may be called without any parameters, and their
effect on the internal state is instant. This is true for Open(), Close(), and Lock() functions. The only
exception is Unlock(); which requires the caller to provide a list of keys, and the state locked is not
changed to false unless one of these keys matches unlockKey. The question now is how to make use
of these functions to make an actual sliding door? The answer is simple: we make another script that
continuously calls IsOpen() and IsClose() and consequently modifies the position of the door towards
open or close positions. This script is SlidingDoor shown in Listing 67.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

205

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(GeneralDoor))]
5.	 public class SlidingDoor : MonoBehaviour {

6.

7.	 //Relative new position of door when opened

8.	 public Vector3 slidingDirection = Vector3.up;
9.	 //Speed of door movement

10.	 public float speed = 2;
11.	 //Store close and open positions

12.	 Vector3 originalPosition, slidingPosition;

13.	 //Reference to general door script

14.	 GeneralDoor door;

15.	 //Current state of the door

16.	 SlidingDoorState state;

17.

18.	 void Start () {

19.	 //Initialize the variables

20.	 door = GetComponent<GeneralDoor>();
21.	 originalPosition = transform.position;
22.	 slidingPosition = transform.position + slidingDirection;
23.	 state = SlidingDoorState.close;
24.	 }

25.

26.	 void Update () {

27.	 if(door.IsOpen()){

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

206

Advanced Game Logic

28.	 //The door must be open

29.	 if(state != SlidingDoorState.open){
30.	 //The door is not open, move it

31.	 //smoothly towards open position

32.	 transform.position =
33.	 Vector3.Lerp(

34.	 transform.position,

35.	 slidingPosition,

36.	 Time.deltaTime * speed);

37.

38.	 float remaining =
39.	 Vector3.Distance(

40.	 transform.position, slidingPosition);

41.

42.	 //Check if door reached open position

43.	 if(remaining < 0.01f){

44.	 //Open position reached:
45.	 //change state of the door

46.	 state = SlidingDoorState.open;
47.	 transform.position = slidingPosition;
48.	 //Inform other scripts about open completion

49.	 SendMessage("OnOpenComplete",
50.	 SendMessageOptions.DontRequireReceiver);
51.

52.	 } else if(state != SlidingDoorState.openning){
53.	 //Door just started to open,

54.	 //send a message to inform about that

55.	 SendMessage("OnOpenStart",
56.	 SendMessageOptions.DontRequireReceiver);
57.

58.	 state = SlidingDoorState.openning;
59.	 }

60.	 }

61.	 } else {

62.	 //The door must be close

63.	 if(state != SlidingDoorState.close){
64.	 //The door is not close, move it

65.	 //smoothly towards close position

66.	 transform.position =

67.	 Vector3.Lerp(

68.	 transform.position,

69.	 originalPosition,

70.	 Time.deltaTime * speed);

71.	 float remaining =
72.	 Vector3.Distance(

73.	 transform.position, slidingPosition);

74.

75.	 //Check if door reached close position

76.	 if(remaining < 0.01f){

77.	 //Close position reached:

78.	 //change state of the door

79.	 state = SlidingDoorState.close;
80.	 transform.position = originalPosition;
81.	 //Inform other scripts about close completion

82.	 SendMessage("OnCloseComplete",

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

207

Advanced Game Logic

83.	 SendMessageOptions.DontRequireReceiver);
84.

85.	 } else if(state != SlidingDoorState.closing){
86.	 //Door just started to close,

87.	 //send a message to inform about that

88.	 SendMessage("OnCloseStart",
89.	 �SendMessageOptions.DontRequireReceiver);
90.

91.	 state = SlidingDoorState.closing;
92.	 }

93.	 }

94.	 }

95.	 }

96.

97.	 void OnCollisionEnter(Collision col){
98.	 if(state == SlidingDoorState.closing){
99.	 //Something interrupted the door while closing

100.	 //Inform about that

101.	 SendMessage("OnCloseInterruption",
102.	 col.gameObject,
103.	 SendMessageOptions.DontRequireReceiver);
104.	 }

105.	 }

106.

107.	 //Enumeration of different door states

108.	 enum SlidingDoorState{

109.	 open, close, openning, closing

110.	 }

111.	 }

Listing 67: A script that implements sliding door functionality

Before discussing the details of this script, notice RequireComponent annotation we used before declaring
the class. This annotation requires the game object to which SlidingDoor script is attached to have a
GeneralDoor script as well. If you attach SlidingDoor script to an object, Unity automatically attaches
GeneralDoor script if does not exist. Similarly, if you try to remove GeneralDoor script from an object
while SlidingDoor is attached to it, the removal is refused by Unity. We benefit from this mechanism
because SlidingDoor completely depends on GeneralDoor and cannot be used alone.

The slidingDirection vector determines the distance the door moves along its local axes when it is opened.
For example, if the sliding direction is (0, 2, 0), the door is going to move two meters up when it is opened.
The variable speed controls the speed of the door when it opens or closes. Opening and closing the door is
in fact a process of smoothly moving it between originalPosition and slidingPosition. The initial position of
the door when Start() is called is taken as originalPosition (close position). On the other hand, slidingPosition
(open position) is computed by adding slidingDirection to originalPosition. In addition to door which
references the attached GeneralDoor, we implement an internal state management by using the enumerator
SlidingDoorState (line 107). The variable state of type SlidingDoorState tells us what the sliding door is
doing at any given moment (opened, closed, opening, or closing). The initial state is set according to door.
initallyOpen. Illustration 80 shows a double sliding door that has two parts with opposite sliding directions.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

208

Advanced Game Logic

Illustration 80: A sliding door with two parts. Arrows indicate sliding direction of each part.

During Update(), the script checks the value of door.IsOpen(). If this function returns true, it means
that the door must be open or, if it is not, must be opened. Therefore, we check state, and if its not
SlidingDoorState.open, then we have three possibilities: the door is closed (SlidingDoorState.closed),
being closed (SlidingDoorState.closing), or being opened (SlidingDoorState.opening). In the first two cases
we have to change state to SlidingDoorState.opening, and simultaneously send OnOpenStart message
to inform other scripts that the door has just started to open. On the other hand, if the state is
already SlidingDoorStart.openning, then we smoothly move the door towards slidingPosition. The smooth
movement is, as we have seen earlier, performed using Vector3.Lerp() function. Door movement has
a dead zone of 0.01, after which the position of the door is set to slidingPosition. Same steps go in the
other direction if door.IsOpen() returns false, since in that case the door must be closed. During closing,
we keep an eye on OnCollisionEnter event. This allows us to detect anything that might block the door
as it closes. A possible reaction is to reopen the door, or destroy the colliding object. The latter option
allows the player to use the door as a weapon to eliminate enemies.

5.2	 Puzzles and unlock combinations

This section is an extension of section 5.1, in which we will continue to work on the sliding door we
have already made. This sliding door is going to be locked using an electrical central lock, and the
player has to solve a simple puzzle to unlock the door and open it. What we need to do now is to add
SlidingDoor script to the two parts of the door and configure their sliding directions to, say, (1.2, 0, 0)
for the right part and (-1.2, 0, 0) for the left part. GeneralDoor script considers the door as unlocked if
the value unlockKey is empty. Since we need locked doors, we need to put some value such as “door2”
for this variable for both parts. Now we can create our central lock. This can be an empty game object
that has the necessary scripts attached to it. The first script is the part of the lock that controls door
parts. CentralLock script is shown in Listing 68.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

209

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class CentralLock : MonoBehaviour {

5.

6.	 //Door object(s)

7.	 public GeneralDoor[] targetDoors;

8.

9.	 //Keys to unlock the doors

10.	 public string[] keys;

11.

12.	 //Should the doors be opened after unlocking?

13.	 public bool autoOpen = true;
14.

15.	 //Should the doors be closed before locking?

16.	 public bool autoClose = true;
17.

18.	 void Start () {

19.

20.	 }

21.

22.	 void Update () {

23.

24.	 }

25.

26.	 //Locks all target doors

27.	 public void LockAll(){

28.	 foreach(GeneralDoor door in targetDoors){

29.	 if(autoClose){

30.	 door.Close();

31.	 }

32.	 door.Lock();

33.	 }

34.	 }

35.

36.	 //Unlocks all target doors using available keys

37.	 public void UnlockAll(){

38.	 foreach(GeneralDoor door in targetDoors){

39.	 door.Unlock(keys);

40.	 if(autoOpen){
41.	 door.Open();
42.	 }

43.	 }

44.	 }

45.	}

Listing 68: A script that centrally controls locking/unlocking of multiple doors

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

210

Advanced Game Logic

This script references an array of doors targetDoors and has another array of keys to unlock them called
keys. When LockAll() function is called, the script iterates over all referenced doors and calls door.Lock().
If autoClose option is selected, every door is closed before being locked. On the other hand, UnlockAll()
function tries to unlock all doors by trying all keys on each one of them and, if autoOpen is selected,
opens them. By having multiple keys, we can reference doors that does not necessarily have the same
unlock secret text. This can be useful for a scenario in which you wish to create a central control room
with secret entrance, and allow the player to unlock all the doors in the level from inside this room.
Otherwise, the player has to find the key for each door to unlock it. An important detail to notice here
that we reference doors through GeneralDoor script (the array targetDoors has the type GeneralDoor[]).
This gives us the opportunity to reference multiple types of doors, not only sliding doors.

We can now attach this script to an empty game object, and then add both parts of the sliding door
to its targetDoors. The second step would be adding “door2” unlock text to keys array. We keep both
autoOpen and autoClose checked, so that all we have to do to open our sliding door is to call UnlockAll().
The question now is: who is going to call this function? And when it is going to be called? The answer
is the puzzle system we are going to build shortly. Before introducing the programmatic details of the
puzzle, let’s briefly discuss its logic. The puzzle has four buttons, which can be switched between two
color states: red and green. To unlock the door, the player must find the correct red/green combination
between these four buttons (if you are curious about the total number of possible combinations, it is 4
to the power 2 = 16). These buttons can be arranged around the door like in Illustration 81.

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

211

Advanced Game Logic

Illustration 81: The four buttons of unlock puzzle arranged around the sliding door

Each one of these buttons must be switchable by the player. Therefore, we are going to reuse SwitchableTrigger
script (Listing 35 page 90) and TriggerSwitcher script(Listing 37 page 92), which we created in section 3.4.
Recall that adding SwitchableTrigger script has the function SwitchState(), which cycles between different
states and can send different messages upon every switch. Additionally, TriggerSwitcher script gives the
player the ability to activate these triggers by pressing E key. Whenever the player switches a puzzle button,
we need to perform three tasks: first, we have to change the color of the switched button from red to green
or vice-versa. Second, we have to change a global state that manages all switches and tests whether the
unlock combination has been matched. Finally, we have to try to open the door, to see if the combination
worked. This means that the door opens automatically once the player gives the correct combination, so
he do not have to reach the door and try to open it every time.

So let’s begin with the easiest part, which is changing the color of the switch. Listing 69 shows ColorCycler
script, which simply cycles the main color of the material between the elements of a provided array of colors.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class ColorCycler : MonoBehaviour {

5.

6.	 //Color to cycle between

7.	 public Color[] colors;

8.

9.	 //index of the current color

10.	 public int currentColor = 0;
11.

12.	 void Start () {

13.	 renderer.material.color = colors[currentColor];
14.	 }

15.

16.	 void Update () {

17.

18.	 }

19.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

212

Advanced Game Logic

20.	 //Cycles to next color in the array

21.	 public void CycleColor(){

22.	 if(colors.Length > 0){

23.	 currentColor++;
24.

25.	 if(currentColor == colors.Length){
26.	 currentColor = 0;
27.	 }

28.

29.	 renderer.material.color = colors[currentColor];
30.	 }

31.	 }

32.	}

Listing 69: A script that cycles the color of the object

Now all we have to do is to attach SwitchableTrigger script to each button (or easier: make a button
prefab) and set the number of states to 2. When each state is activated, it sends CycleColor message to
itself. Next we have to add ColorCycler script to the button and add red and green to colors using the
inspector. Our button is now ready and cycles between red and green colors when switched. We have to
have four copies of this button in the scene, and find a method to combine their states logically to form
a puzzle. The puzzle itself can be any script that runs any logic we want, given that it sends UnlockAll to
CentralLock script when certain condition is met. For our specific puzzle, we need a script that compares
the colors of the four buttons with an internally stored unlock sequence of colors. If the colors match
the sequence, UnlockAll message is sent to CentralLock, otherwise LockAll message is sent. This script is
ColorCodePuzzle shown in Listing 70.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class ColorCodePuzzle : MonoBehaviour {

5.

6.	 //Unlock sequence
7.	 public Color[] unlockCode;

8.

9.	 //Where to get input code

10.	 public Renderer[] colorSources;

11.

12.	 //Message to send upon code match

13.	 public TriggerMessage[] matchMessages;

14.

15.	 //Messages to send upon code mismatch

16.	 public TriggerMessage[] mismatchMessages;

17.

18.	 void Start () {

19.

20.	 }

21.

22.	 void Update () {

23.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

213

Advanced Game Logic

24.	 }

25.

26.	 //Compare both codes

27.	 public void CompareCodes(){

28.	 //Assume combinations match

29.	 bool match = true;
30.

31.	� //Get combination from sources and compare it with unlock code

32.	 for(int i = 0; i < colorSources.Length; i++){
33.	 //One difference is enough to deny match
34.	 �if(!colorSources[i].material.color.Equals(unlockCode[i])){
35.	 match = false;
36.	 }

37.	 }

38.

39.	 TriggerMessage[] toSend;

40.

41.	 //If the code matches combination

42.	 //Then send match messages

43.	 if(match){

44.	 toSend = matchMessages;
45.	 } else {

46.	 //else send mismatch messages

47.	 toSend = mismatchMessages;
48.	 }

49.

50.	 //Send messages

51.	 foreach(TriggerMessage msg in toSend){

52.	 if(msg.messageReceiver != null){
53.	 msg.messageReceiver

54.	 .SendMessage(

55.	 msg.messageName,
56.	 �SendMessageOptions.RequireReceiver);
57.

58.	 }

59.	 }

60.	 }

61.	}

Listing 70: The script of color combination unlock puzzle

For this script we have reused TriggerMessage small class we have created earlier in section 3.4 (Listing 35
page 90). This time we have two arrays of messages: matchMessages, which we send when colors match
unlock code, and mismatchMessages, which we send otherwise. unlockCode is directly provided as an array of
colors that can be set from the inspector, while other colors that user change come from different renderers.
These renderers are referenced through colorSources array. To bind the four buttons with the puzzle, we
have to reference their renderers as colorSources. Whenever a button is switched, it must first switch its
color and then send CompareCodes message to the puzzle. For simplicity, we attach ColorCodePuzzle to the
same object of CentralLock. The final configuration of each button, as well as the central lock and the puzzle
is shown in Illustration 82. It is remember to notice that colors of the unlock code and the buttons must
match perfectly in terms of color degree: not any green matches any green, but the numeric values of the
colors must be the same. The final functional demo can be found in scene20 in the accompanying project.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

214

Advanced Game Logic

Illustration 82: Configuring buttons, puzzle, and central lock to implement color sequence unlock mechanism

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

215

Advanced Game Logic

5.3	 Health, lives, and score

Player health is one of the vital things needed in many games. The player usually starts the game with
full health represented most of times as numeric value of 100. As the player goes through the game he
gets attacked by enemies, which causes his health to drop. Nevertheless, he can also pickup some objects
that increases his health. If the health of the player reaches zero, the player dies. After his death, however,
it is possible to give the player another chance by allowing him to have multiple lives. When the player
loses all of his lives, the game is over. In addition to health and lives, it is possible to have a score system
that makes the performance of the players comparable.

In this section, we are going to compile the three topics: health, lives, and score into a complete game.
In this game, the player controls a cube inside a closed room, which is surrounded by cannons that
shoot projectiles. The objective is to survive for the longest possible time by moving and avoiding these
projectiles. The player has a health of 100 and three lives. Projectiles has two types: red projectiles that
take 10 health points, and green projectiles that take 5 health points. The good player performance
results in longer survival time, so it is a good idea to take the number of seconds the player survived as
his score. Illustration 83 shows a top view of the room we are going to use. The barrels you see are the
torrents (shooters), which are simply cylinders. It is important to rotate each shooter so that the positive
direction of its local y axis points towards inside the room.

Illustration 83: Top view of the play room and the shooters surrounding it

To prevent the projectiles from colliding with the shooters, we have to remove colliders of all shooters.
Each one of these shooter will be given a collection of projectile prefabs to randomly choose one from
them and shoot it. Additionally, they will be given maximum and minimum time limits to randomly set
pause time between shoots. These functions are encoded in PhysicsShooter script shown in Listing 71.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

216

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PhysicsShooter : MonoBehaviour {

5.

6.	 //Prefabs of projectiles to shoot

7.	 public GameObject[] projectils;
8.

9.	 //min and max time between shots

10.	 public float minTime = 1, maxTime = 6;
11.

12.	 void Start () {

13.	 ShootRandomly();

14.	 }

15.

16.	 void Update () {

17.

18.	 }

19.

20.	 void ShootRandomly(){

21.	 //Shoot after random time

22.	 float randomTime = Random.Range(minTime, maxTime);
23.	 Invoke("Shoot", randomTime);
24.	 }

25.

26.	 void Shoot(){

27.	 //Select random projectile

28.	 int index = Random.Range(0, projectils.Length);
29.	 GameObject prefab = projectils[index];
30.	 GameObject projectile = (GameObject)Instantiate(prefab);
31.

32.	 //Shoot the projectile

33.	 projectile.transform.position = transform.position;
34.	 projectile.rigidbody.AddForce

35.	 (transform.up * 6, ForceMode.Impulse);

36.

37.	 //Reshoot after random time

38.	 ShootRandomly();

39.	 }

40.	}

Listing 71: A script to randomize type of projectile and shoot timing

The script performs shooting by adding impulse force to the instantiated projectile, which must be chosen
randomly from projectiles array. After each shooting, ShootRandomly() is called. This function generates
a random value between minTime and maxTime, then uses this value as latency before invoking Shoot()
again. Now we have to create the two projectiles that will be shot by these cannons. These projectiles
must have the ability to decrease player’s health when they hit him. Therefore we call their script
PainfulProjectile, which is shown in Listing 72.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

217

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PainfulProjectile : MonoBehaviour {

5.

6.	 //Damage caused by the projectile

7.	 public int damage;

8.

9.	 void Start () {

10.

11.	 }

12.

13.	 void Update () {

14.

15.	 }

16.

17.	 void OnCollisionEnter(Collision col){
18.	 //Tell other object about painful hit

19.	 col.gameObject.SendMessage("OnPainfulHit",
20.	 damage,

21.	 �SendMessageOptions.DontRequireReceiver);
22.

23.	 //Destroy the projectile

24.	 Destroy(gameObject);
25.	 }

26.	}

Listing 72: A script for projectile that decreases player’s health by hitting him

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

218

Advanced Game Logic

The script is fairly simple: when it collides with another object, it informs the colliding object about the
painful that occurred and passes the amount of damage that has to be taken. We can use this scripts
to make prefabs for two types of projectiles with 5 and 10 damage power. For this example we can use
shining green and red balls as projectiles. We can make them shining by adding a point line object with
the same color of the texture as a child. Illustration 84 shows how these projectiles are going to look
like. Since these projectiles need to be controlled by physics simulator, we need to attach rigid bodies to
them. However, it is necessary to disable Use Gravity option for the rigid bodies to prevent them from
falling on the ground and hence keep moving in straight line when launched.

Illustration 84: Small green shining projectile (left) with 5 damage, and big red shining
projectile with 10 damage

These two prefabs need to be added to projectiles array inside shooter prefab. As a result, all shooter
scripts attached to the cannons in the scene are going to have these projectiles automatically added to
their projectiles array. We have now completed the playground in which our game is going to be played,
so the next step will be creating the player. Our player for this game is going to be a simple cube with
PhysicsCharacter attached to it, in addition to TopViewControl shown in Listing 73, which allows us to
control the character from a top view and move it in the four directions. Additionally, we have to disable
jump by freezing the movement of player’s rigid body on y axis. To prevent unwanted rotations, we have
also to freeze rigid body rotation on x, y, and z axes.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

219

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(PhysicsCharacter))]
5.	 public class TopViewControl : MonoBehaviour {

6.

7.	 //Reference to the physics character

8.	 PhysicsCharacter pc;

9.

10.	 void Start () {

11.	 //Get the attached physics character

12.	 pc = GetComponent<PhysicsCharacter>();
13.	 }

14.

15.	 void Update () {

16.	 //Use arrows to control the movement

17.	 if(Input.GetKey(KeyCode.RightArrow)){

18.	 pc.StrafeRight();

19.	 } else if(Input.GetKey(KeyCode.LeftArrow)){

20.	 pc.StrafeLeft();

21.	 }

22.

23.	 if(Input.GetKey(KeyCode.UpArrow)){

24.	 pc.WalkForward();

25.	 } else if(Input.GetKey(KeyCode.DownArrow)){

26.	 pc.WalkBackwards();

27.	 }

28.

29.	 }

30.	}

Listing 73: A script to control physics character from a top view. Jumping is not enabled in this controller

Since we are developing a game in which the player has multiple lives, it is important to save the cube
that represents player as a prefab, which gives us the ability to destroy/regenerate player multiple times.
In addition to control scripts, the prefab needs other scripts that specify player’s health and how it can
be reduced or increased. Therefore, we need PlayerHealth script, shown in Listing 74, which represent
the health as integer value than can be changed through function calls.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

220

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PlayerHealth : MonoBehaviour {

5.

6.	 //Health amount at the beginning

7.	 public int initialHealth = 100;
8.

9.	 //Max health limit

10.	 public int maxHealth = 100;
11.

12.	 //Current health

13.	 int health;

14.

15.	 //Internal dead flag
16.	 bool dead = false;
17.

18.	 void Start () {

19.	 //Insure appropriate initial health

20.	 health = Mathf.Min(initialHealth, maxHealth);
21.	 //Player cannot start dead

22.	 if(health < 0){

23.	 health = 1;
24.	 }

25.	 }

26.

27.	 void Update () {

28.	 if(!dead){

29.	 if(health <= 0){
30.	 //Player died

31.	 dead = true;
32.

33.	 //Tell other scripts about player’s death

34.	 //and give them his final health
35.	 SendMessage("OnPlayerDeath",
36.	 health,

37.	 SendMessageOptions.DontRequireReceiver);
38.	 }

39.	 }

40.	 }

41.

42.	 //Deacrease health and inform other scripts about it

43.	 public void DecreaseHealth(int amount){

44.	 //Do nothing if the player is already dead

45.	 if(IsDead()) return;

46.

47.	 health -= amount;
48.	 SendMessage("OnHealthDecrement",
49.	 health,

50.	 SendMessageOptions.DontRequireReceiver);
51.	 }

52.

53.	 //Increase health and inform other scripts about it

54.	 public void IncreaseHealth(int amount){

55.	 //Do nothing if the player is already dead

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

221

Advanced Game Logic

56.	 if(IsDead()) return;

57.

58.	 //Increase only of health is less than full

59.	 if(health < maxHealth){

60.	 //Do not allow the health to exceed maxHealth

61.	 health = Mathf.Min(maxHealth, health + amount);
62.	 SendMessage("OnHealthIncrement",
63.	 health,

64.	 SendMessageOptions.DontRequireReceiver);
65.	 }

66.	 }

67.

68.	 //Returns whether player is dead

69.	 public bool IsDead(){

70.	 return dead;

71.	 }

72.

73.	 public int GetCurrentHealth(){

74.	 return health;

75.	 }

76.	}

Listing 74: A script to handle the health of the player and alter it

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

222

Advanced Game Logic

When the script is attached to the player, it is possible to set the initial value of health through initialHealth.
However, the script ensures that the actual start value is between maxHealth and 1. This prevents initial
health from exceeding set limits as well as preventing player from starting dead. Player’s death occurs
when the value of the internal state health gets less than or equal to 0. This internal state can be altered
only through IncreaseHealth() and DecreaseHealth() functions. These functions enforce minimum and
maximum limits and send relevant messages upon each health state change. When the player dies, the
script sends OnPlayerDeath message.

PlayerHealth gives us the ability to manage player’s health and detect his death. In addition to that, it
allows us to change health value by calling appropriate functions. It does not, however, say anything
about what causes the health to increase/decrease. Therefore, we need another script which can detect
hits that player receives and consequently decreases health. This script is PainfulDamageTaker, shown
in Listing 75.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(PlayerHealth))]
5.	 public class PainfulDamageTaker : MonoBehaviour {

6.

7.	 //Reference to player health

8.	 PlayerHealth playerHealth;

9.

10.	 void Start () {

11.	 playerHealth = GetComponent<PlayerHealth>();
12.	 }

13.

14.	 void Update () {

15.

16.	 }

17.

18.	 //Handle painful hit by decreasing

19.	 //player’s health by the provided amount (damage)

20.	 void OnPainfulHit(int amount){
21.	 playerHealth.DecreaseHealth(amount);

22.	 }

23.	}

Listing 75: A script to receive painful hit and consequently reduce player’s health

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

223

Advanced Game Logic

Since everything regarding player’s health is handled trough PlayerHealth script, all we have to do in
this script is to receive the message OnPainfulHit along with provided damage amount. This amount is
then used as input value when calling DecreaseHealth() function of PlayerHealth. If you run the game
now with the player character inside the room, you should be able to control the cube and try to avoid
the projectiles that cannons shoot. Illustration 85 shows a screen shot during game play.

Illustration 85: A screen shot of game play with player cube and projectiles

What we need to do now is to visually inform the player about his health status. Managing the status
internally is enough to know how much health the player still has and whether he is dead or not. However,
it is necessary to share this information with the player as well. One option is to textually represent health
amount, but there are unlimited other options. For this example we are going to use color-coded health
display. The color of the cube should vary between red and green depending on the current health. When
the health is full then the color of the cube must be green, and it gets closer to red as health value drops.
This effect can be achieved through HealthColorChanger script shown in Listing 76.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

224

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(PlayerHealth))]
5.	 public class HealthColorChanger : MonoBehaviour {

6.

7.	 //Color when health is full

8.	 public Color fullHealth = Color.green;
9.

10.	 //Color when player is dead

11.	 public Color zeroHealth = Color.red;
12.

13.	 //Reference to player health script

14.	 PlayerHealth playerHealth;

15.

16.	 void Start () {

17.	 playerHealth = GetComponent<PlayerHealth>();
18.	 UpdateColor(playerHealth.GetCurrentHealth());

19.	 }

20.

21.	 void Update () {

22.

23.	 }

24.

25.	 void OnHealthIncrement(int amount){
26.	 UpdateColor(amount);

27.	 }

28.

29.	 void OnHealthDecrement(int amount){
30.	 UpdateColor(amount);

31.	 }

32.

33.	 //Vary color between full and death colors depending on

34.	 //the value of new player health

35.	 void UpdateColor(int newHealth){

36.	 //Convert integer health to float value
37.	 //between 0 (death) and 1 (full health)

38.	 float val = (float)newHealth /
39.	 (float) playerHealth.maxHealth;
40.

41.	 //Apply the new color

42.	 renderer.material.color =
43.	 Color.Lerp(zeroHealth, fullHealth, val);

44.	 }

45.	}

Listing 76: A script to interpolate cube color between two values based on player’s health

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

225

Advanced Game Logic

What does this script do is simply handle OnHealthIncrement and OnHealthDecrement messages by
taking the new health value as interpolate value between zeroHealth and fullHealth colors. Since the
health is represented as integer value, it must be converted to a float between zero (minHealth) and one
(maxHealth – minHealth). Finally, Color.Lerp() is used to set the new color value. If you play the game
after attaching this script to player’s prefab, you can notice that the cube starts in green. As the player
receives hits and the health drops, the color changes to yellow, orange, and then red.

The next question to answer is: what happens when the player dies? Currently nothing, since we do not
do anything when the health of the player reaches zero (or less). However, what needs to be done is to
take one life from the player and regenerate it again with full health. Therefore, we need to appropriately
handle OnPlayerDeath that PlayerHealth sends when the player dies. This must be handled by an external
script that counts player’s lives and manages game state accordingly. In other words, when the remaining
lives reach zero, the game is over and no further regeneration is possible. This script is LivesManager, and
it must be attached to a permanent object in the scene. From a logical point of view, it is not possible to
attach this script to the player cube game object, since the destruction and regeneration of this object
causes stored values to be lost. One good option is to attach this script to the main camera. LivesManager
script is shown in Listing 77.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

226

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class LivesManager : MonoBehaviour {

5.

6.	 //Initial number of lives

7.	 public int startLives = 3;
8.

9.	 //internal counter

10.	 int lives;

11.

12.	 void Start () {

13.	 //Enforce at least one life initially

14.	 if(startLives > 0){

15.	 lives = startLives;
16.	 } else {

17.	 lives = 1;
18.	 }

19.	 }

20.

21.	 void Update () {

22.

23.	 }

24.

25.	 public void GiveLife(){

26.	 lives++;
27.	 SendMessage("OnLifeGained",
28.	 lives, //New number of lives
29.	 �SendMessageOptions.DontRequireReceiver);
30.	 }

31.

32.	 public void TakeLife(){

33.	 lives--;

34.	 if(lives == 0){
35.	 //Last live lost

36.	 //Someone has to take care about that

37.	 SendMessage("OnAllLivesLost",
38.	 SendMessageOptions.DontRequireReceiver);
39.	 } else {

40.	 //A life has been lost

41.	 //Handle this elsewhere

42.	 SendMessage("OnLifeLost",
43.	 lives, //Remaining lives

44.	 SendMessageOptions.DontRequireReceiver);
45.	 }

46.	 }

47.

48.	}

Listing 77: A script to control the number of lives for the player. This script must be attached to a permanent game object in the scene

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

227

Advanced Game Logic

The script handles the number of lives in a similar way to that PlayerHealth uses to handle the health:
we have an initial value that is enforced to be at least 1 at the beginning, and the internal value can be
later altered through GiveLife() and TakeLife() functions. Notice that TakeLife() can send two messages
when called: if the player still has more lives it sends OnLifeLost message. However, if the last life has
just been lost, OnAllLivesLost message is sent. We need now to a mechanism to call TakeLife() when the
player’s health reaches zero or less. In other words, OnPlayerDeath message needs to be forwarded as
TakeLife message. This mechanism is fairly simple and can be achieved through PlayerDeathReporter
script shown in Listing 78.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PlayerDeathReporter : MonoBehaviour {

5.

6.	 //Reports player’s death to lives manager

7.	 LivesManager manager;

8.

9.	 void Start () {

10.	 manager = FindObjectOfType<LivesManager>();
11.	 }

12.

13.	 void Update () {

14.

15.	 }

16.

17.	 //Handle player’s death event by taking a life

18.	 void OnPlayerDeath(int deathHealth){
19.	 if(manager != null){
20.	 manager.TakeLife();

21.	 }

22.	 }

23.	}

Listing 78: A script to report player’s death event to lives manager in order to take a life from player

As you see, the script is fairly simple and self explanatory. Remember that we have created LivesManager
script to handle the event of player’s death by reducing a life. However, we still need to handle the case
when all lives are lost. Up to now, nothing really happens when a life is lost other than decreasing an
internal counter that has no effect. Therefore, the next step is going to create a generation and destruction
mechanism for player’s character (the cube). Remember that we have already counted for this, hence
created a cube prefab with all necessary scripts attached to it. What we need to do now is to remove the
cube from the scene and delegate generation and destruction functions to PlayerSpawn script. This script
controls when to destroy an existing player cube and instantiate a new one. Listing 79 shows this script.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

228

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PlayerSpawn : MonoBehaviour {

5.

6.	 //Prefab of the player object

7.	 public GameObject playerPrefab;
8.

9.	 //Seconds to wait between death and respawn

10.	 public int spawnDelay = 3;
11.

12.	 //Reference to current player

13.	 GameObject currentInstance;
14.

15.	 void Start () {

16.	 SpawnPlayer();

17.	 }

18.

19.	 void Update () {

20.

21.	 }

22.

23.	 //A life has been lost

24.	 void OnLifeLost(int remainingLives){
25.	 //Regenerate Player, delay spawn

26.	 Destroy(currentInstance);

27.	 Invoke("SpawnPlayer", spawnDelay);
28.	 }

29.

30.	 //Game Over
31.	 void OnAllLivesLost(){
32.	 Destroy(currentInstance);

33.	 }

34.

35.	 void SpawnPlayer(){

36.	 currentInstance =
37.	 (GameObject) Instantiate(playerPrefab);
38.	 }

39.	}

Listing 79: A script to handle destruction and instantiation of player’s character based on lives

This script needs a prefab to instantiate, in addition to a time delay to wait between death and next spawn.
The script starts by calling SpawnPlayer(), which instantiates the prefab of the character and keeps an
internal reference to it in currentInstance. This reference is necessary to destroy the player when a life
is lost. Therefore, there is a need to handle OnLifeLost message sent by LivesManager, which is done by
OnLifeLost() function. This function destroys the current instance, and then calls SpawnPlayer() with
the delay predefined in spawnDelay. The lost of last life is handled through OnAllLivesLost() function,
which destroys currentInstance, but this time without calling SpawnPlayer().

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

229

Advanced Game Logic

Just like what we have done with player’s health, we need a visual representation of the number of lives
the player has. The simplest way is through a textual representation. For this purpose, we are going to use
a new game object, which is 3D Text. This object can be placed anywhere in the scene, and can render
the given text as 3D characters that can be viewed from different angles. However, for this example we
need the text to be directly on front of the camera.

To add a 3D text to the scene, go to Game Object > Create Other > 3D Text. After that, position the text just like you do
with any other game object. You can switch to game view to make sure it is positioned correctly in front in the camera
and visible to the player.

Illustration 86 shows 3D Text properties as they appear in the inspector.

Illustration 86: Properties of 3D Text displayed in the inspector

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

230

Advanced Game Logic

Most of the properties are clear, and they are familiar to anyone who deals with text in computer. Our
focus will be on Text property, which we need to access through a script and modify it. To begin with
lives display, we have first to add a 3D Text and position it in an appropriate position. For example, we
can position it in the top of game view. It is a good idea to give the text an initial value, such as 0. After
that we have to write a script that reads the number of lives the player has and updates the displayed
text correspondingly. This script is LivesCounterHandler, shown in Listing 80.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(LivesManager))]
5.	 public class LivesCounterHandler : MonoBehaviour {

6.

7.	 //Reference to 3D Text object

8.	 public TextMesh display;

9.

10.	 //Reference to lives manager

11.	 LivesManager lManager;

12.

13.	 void Start () {

14.	 lManager = GetComponent<LivesManager>();
15.	 //Start by displaying startLives

16.	 display.text = lManager.startLives.ToString();
17.	 }

18.

19.	 void Update () {

20.

21.	 }

22.

23.	 void OnLifeGained(int newLives){
24.	 //Number of lives changed, update
25.	 display.text = newLives.ToString();
26.	 }

27.

28.	 void OnLifeLost(int remainingLives){
29.	 //Number of lives changed, update
30.	 display.text = remainingLives.ToString();
31.	 }

32.

33.	 void OnAllLivesLost(){
34.	 //All lives have been lost,

35.	 //display ‘Game Over’ text
36.	 display.text = "Game Over";
37.	 }

38.	}

Listing 80: A script that updates a 3D Text to display the number of lives the player currently has

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

231

Advanced Game Logic

Notice that the variable type we use to reference a 3D Text object is called TextMesh. This script requires
LivesManager, so it has also to be attached to the main camera. After adding it, we need to drag the 3d
text object we are going to use as lives count display from the hierarchy to display variable. The initial
value of display.text is set to startLives, which is the initial number of lives according to LivesManager.
display.text is a string that sets the displayed text of 3D Text, and, since it is string, we need to convert
the integer value of startLives to string by calling ToString() function as in line 16. After setting the initial
text value, all we have to do is to monitor any changes on the number of lives by handling OnLifeLost
and OnLifeGained messages. Upon each change, we read the provided new number of lives and update
display.text according to it. However, when OnAllLivesLost message is received, we display the message
“Game Over”.

The last topic in this section is player score. Up to now we have developed a fully functional game with
lives and health. What remains is to evaluate player’s performance by a score value. Since we are talking
about a survival game, the best thing to use as score is the number of seconds the player was able to
survive. First of all, we need a 3D Text to display the score, and we are going to add it to the bottom of the
screen. Additionally, we need to write a script that increments the score every second. Like LivesManager,
score script needs a permanent game object to be attached to, so we will use the main camera again for
this purpose. Listing 81 shows ScoreCounter script, which counts and displays player’s score.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

232

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(LivesManager))]
5.	 public class ScoreCounter : MonoBehaviour {

6.

7.	 //Where to show score? (optional)

8.	 public TextMesh display;

9.

10.	 LivesManager lManager;

11.

12.	 //Internal score counter

13.	 int score = 0;
14.

15.	 void Start () {

16.	 lManager = GetComponent<LivesManager>();
17.	 //Increase 1 point every second

18.	 InvokeRepeating("IncrementScore", 1, 1);
19.	 }

20.

21.	 void Update () {

22.

23.	 }

24.

25.	 void IncrementScore(){

26.	 score++;
27.	 if(display != null){
28.	 display.text = score.ToString();
29.	 }

30.	 }

31.

32.	 void OnAllLivesLost(){
33.	 //Game over, stop counting

34.	 CancelInvoke("IncrementScore");
35.	 }

36.	}

Listing 81: A script to increment player’s score every second and display it

The core function of this script is IncrementScore(), which increments internal score counter by 1
every time it is called. It also updates the text on display if a text mesh is provided. In Start(), we call
InvokeRepeating() function and ask it to keep calling IncrementScore() one time every second. As a
result, the score will be incremented by 1 every second, and the 3D Text that displays the score updates
continuously as well. When OnAllLivesLost message is received, we know that the game is over. Therefore,
we have to stop incrementing score by stopping the repetitive calling of IncrementScore(). To stop calling
a function we use CancelInvoke() function and give it the name of the target function. The final look
of the game with lives and score counter is shown in Illustration 87. The complete demo is available in
scene21 in the accompanying project.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

233

Advanced Game Logic

Illustration 87: A screen shot of the final game. The upper digit is the number of lives left, and the lower
number is the score.

5.4	 Weapons, ammunition, and reload

In many games that contain shooting mechanic, it is possible the player owns a number of weapons and
can switch between them in order to deal with different situations. Additionally, most weapons have a
form of finite ammunition that need to be refilled from time to time. This ammunition is sometimes
represented as a number of magazines that need to be replaced when they are empty, which results in
reload mechanic known to most first person shooter players. In this section we are going to learn how to
implement all these weapon functions. So let’s begin with a scene with a fixed camera like in Illustration
88. In this scene, we are not going to move, but will be able to aim and shoot with mouse pointer, we
can also use the keyboard to switch between different weapons. Notice that 3D text are used to draw a
simple GUI for the user, which we are going to use to show the number of remaining ammo as well as
reload progress.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

234

Advanced Game Logic

Illustration 88: Basic scene constructed to test different weapons

The walls you see in Illustration 88 are constructed using destructible building blocks similar to those
we used in section 4.6. However, we are going to make some modifications on these building blocks,
therefore we need to create a new prefab other than the one used in section 4.6. One good thing about
prefabs is ability to modify hundreds of objects from a single place, so we are going just to make a copy
of the original ReturnableBrick prefab, rename it to ShootableBrick, and use it to build these walls. We
are going to come back later to our prefab to modify it. Now we need to create a new object and name
it player, and position it in the same position of the camera. This object is going to be used as aiming
and shooting point, which means that it must initially look forward towards the scene (the positive z
axis of the object must point to the same direction of the camera). Additionally, we need to add three
empty children to this object, which are the weapons to be used by the players. These objects should be
named after the weapons they represent: Rifle, RPG, and Sniper.

The three different weapons (rifle, RPG, and sniper) have common properties such as the ability to fire
them, their need to ammo, and so on. On the other hand, each one of them has its own implementation
to “fire weapon”: the sniper shoots single accurate bullet, the rifle shoots a large number of bullets
in short time, and the RPG shoots one rocket. Therefore, we need to separate general functions that
reflects common properties among all weapons from specific implementation of weapon firing. These
general functions are implemented in GeneralWeapon script in Listing 82. This script must be added to
all weapons.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

235

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class GeneralWeapon : MonoBehaviour {

5.

6.	 //How many magazines remaining

7.	 public int magazineCount = 3;
8.

9.	 //Ammunation count per full magazine

10.	 public int magazineCapacity = 30;
11.

12.	 //Ammunation remaining in current magazine

13.	 public int magazineSize = 30;
14.

15.	 //How many seconds needed to reload?

16.	 public float reloadTime = 3;
17.

18.	 //How many times can the weapon shoot in one second?

19.	 public float fireRate = 3;
20.

21.	 //If true, there is no need to release

22.	 //the trigger between firings
23.	 public bool automatic = false;
24.

25.	 //Ammunation lost per firing
26.	 //Must not exceed magazine capacity

27.	 public int ammoPerFiring = 1;
28.

29.	 //Is this weapon currently hold by the player?

30.	 public bool inHand = false;
31.

32.	 //Internal timer for fire rate
33.	 float lastFiringTime = 0;
34.

35.	 //Internal state for reload progress

36.	 float reloadProgress = 0;
37.

38.	 //Internal storage of trigger state

39.	 bool triggerPulled = false;
40.

41.	 void Start () {

42.

43.	 }

44.

45.	 void Update () {

46.	 //If the weapon is currently in hand and it reloads,

47.	 //then advance reload progress with time

48.	 if(inHand && reloadProgress > 0){

49.	 reloadProgress += Time.deltaTime;
50.	 if(reloadProgress >= reloadTime){
51.	 //Reloading completed

52.	 //Discard the current magazine

53.	 //and install a new one

54.	 magazineSize = magazineCapacity;

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

236

Advanced Game Logic

55.	 magazineCount--;

56.	 reloadProgress = 0;
57.	 SendMessage("OnReloadComplete",
58.	 SendMessageOptions.DontRequireReceiver);
59.	 }

60.	 }

61.	 }

62.

63.	 public void Fire(){

64.	 //Make sure the weapon is in hand and not

65.	 //currently reloading, enforce time gap between firings,
66.	 //and make sure that the weapon is either automatic

67.	 //or the trigger has been released after last firing
68.	 if(inHand && reloadProgress == 0 &&
69.	 (automatic || !triggerPulled) &&
70.	 Time.time – lastFiringTime > 1 / fireRate){
71.	 //Do we have enough ammo in the current magazine?

72.	 if(magazineSize >= ammoPerFiring){
73.	 //Yes, fire by reducing ammo,
74.	 //setting fire timer,
75.	 //and sending OnWeaponFire message
76.	 magazineSize -= ammoPerFiring;
77.	 lastFiringTime = Time.time;
78.	 triggerPulled = true;
79.	 SendMessage("OnWeaponFire",
80.	 SendMessageOptions.DontRequireReceiver);
81.

82.	� //if the remaining ammo is not enough, then reload

83.	 if(magazineSize < ammoPerFiring){

84.	 Reload();

85.	 }

86.

87.	 } else {

88.	 //No, reload
89.	 Reload();

90.	 }

91.	 }

92.	 }

93.

94.	 public void ReleaseTrigger(){

95.	 triggerPulled = false;
96.	 }

97.

98.	 public void Reload(){

99.	 //Make sure there is no reloading in progress

100.	 if(reloadProgress == 0){
101.	 //Make sure there is enough magazines

102.	 //and the current magazine isn’t full

103.	 if(magazineCount > 0 &&

104.	 magazineSize < magazineCapacity){

105.	 //Initialize reloading progress

106.	 reloadProgress = Time.deltaTime;
107.	 SendMessage("OnReloadStart",
108.	 SendMessageOptions.DontRequireReceiver);
109.	 }

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

237

Advanced Game Logic

110.	 }

111.	 }

112.

113.	 //returns current reload progress percentage

114.	 public float GetReloadProgress(){
115.	 return reloadProgress / reloadTime;

116.	 }

117.	 }

Listing 82: A script that handles common functions of all weapons

The first three variables are used to manage ammunition. The difference between magazineCapacity
and magazineSize is that the first one is constant and tells us the number of maximum bullets in a
single magazine. However, magazineSize is variable and is reduced by ammoPerFiring whenever the
weapon is fired. In addition to ammunition management, we have other variables to manage timing. For
example, reloadTime is the number of seconds needed to reload the weapon when the current magazine
becomes empty. Additionally, fireRate decides how many times the weapon can be fired in one second.
lastFiringTime and reloadProgress are used in together with fireRate and reloadTime to compute the timing
correctly. The third important aspect we need to manage is whether the weapon is automatic, which
means it has the ability to continuously fire bullets while the trigger is pulled. This property is managed
through automatic and triggerPulled flags. Finally, we have inHand flag, which affects all other functions:
if the weapon is not currently held in hands, it can not be neither fired nor reloaded.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

238

Advanced Game Logic

Fire() and ReleaseTrigger() functions are related. If the weapon is not automatic, ReleaseTrigger() must
be called each time after Fire(). Fire() on the other hand must ensure that

•	 the weapon is currently in hand,
•	 is not reloading,
•	 either automatic or the trigger is currently released, and
•	 there are enough bullets in the magazine.

If all of these conditions are met, it sends OnWeaponFire message, sets triggerPulled flag, and reduces
bullet count in the current magazine. If the number of bullets remaining in the magazine is less than
the number needed to fire, Reload() is automatically called. Reload() is responsible for initiating reload
process rather than instantly reloading the weapon. The variable reloadProgress represent the time
passed since the last time Reload() has been called. If reloadProgress is zero, this means the weapon is
not currently reloading. Therefore, Reload() must check that reloadProgress equals zero before initiating
reload process. It is also necessary to have at least one additional magazine in order for reloading to
take place. Therefore, Reload() checks the value of magazineCount in addition to magazineCapacity
and magazineSize, to make sure that the magazine we are trying to replace is not full. If all conditions
are met, we set the value of reloadProgress to Time.deltaTime. As a result, the value of reload progress
will accumulate through Update() calls by adding Time.deltaTime during each frame. When the value
of reloadProgress exceeds reloadTime, reloading is completed by decrementing the count of magazines
remaining and setting the size of the current magazine to magazine capacity.

The last function we are going to cover in this script is GetReloadProgress(). If the weapon is currently
reloading, it returns reloading progress as a float value between 0 and 1. If this function returns zero, it
means that the weapon is not currently reloading. The returned value can be used to interpolate some
animations or control progress bars etc. Illustration 89 shows the GeneralWeapon for the three weapons
and how the values vary between them.

Illustration 89: Setting the properties of GeneralWeapon for rifle, RPG, and sniper

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

239

Advanced Game Logic

If you consider GeneralWeapon as the processing core of shooting mechanism, then you would recognize
that it needs both input and output handlers. The input handler is responsible for aiming the weapon
and calling Shoot() function based on player input. On the other side we need an output handle which
receives OnWeaponFire message and translates it to actual effect on the scene. Let’s begin with the input
handler, since it is common among the three weapons, unlike output handlers. Remember that we are
using the mouse to aim at targets and shoot them. Therefore, we need a script that looks at the position
of the mouse pointer. This script is MousePointerFollower shown in Listing 83. This script must be added
to player game object, which is the parent of the three weapons.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class MousePointerFollower : MonoBehaviour {

5.

6.	 //A marker that can be placed on the current target

7.	 public Transform targetMarker;

8.

9.	 void Start () {

10.	 //Hide the marker behind the player

11.	 targetMarker.position =
12.	 transform.position – Vector3.forward;
13.	 }

14.

15.	 void Update () {

16.	 //Try to find the point where mouse points
17.	 Ray camToMouse =
18.	 Camera.main.ScreenPointToRay (Input.mousePosition);

19.

20.	 RaycastHit hit;

21.	 if(Physics.Raycast(camToMouse, out hit, 500)){

22.	 //An object has been found, look at it

23.	 transform.LookAt(hit.point);

24.	 //Move the marker to the hit point

25.	 targetMarker.position = hit.point;
26.	 //Move the marker a little bit towards us

27.	 targetMarker.LookAt(transform.position);

28.	 targetMarker.Translate(0, 0, 0.1f);

29.	 } else {

30.	 //No object under the mosue pointer,
31.	 //look far away

32.	 transform.LookAt(camToMouse.GetPoint(500));

33.	 //Hide the marker

34.	 targetMarker.position =
35.	 transform.position – Vector3.forward;
36.	 }

37.	 }

38.

39.	}

Listing 83: A script to make the object always look at the position of the mouse pointer

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

240

Advanced Game Logic

For our example, we are going to use a small red light with low radius and high intensity to mark the
current target. This marker can be referenced from the script via targetMarker. At the beginning, we
hide this marker by positioning it behind the player (remember that the positions of the player and the
camera are the same). During each frame update, we get the ray that starts from the camera and passes
through the mouse pointer. We then use this ray in a ray cast test to check if there is an object under the
mouse pointer. If such object is found, we position the marker at the point where the ray hits the object.
Notice that we make the pointer look to our object and move it forward a little bit to make it visible.
We also make our object (the player) look at hit point. Since all weapons are children of the player and
have the same position and rotation of it, they are going to be targeted towards the hit point as well. If
ray casting did not detect any object under mouse pointer, we take a far point (500 meters away) along
the ray and look at it. In that case, the marker is positioned again behind the player to make it invisible.

After pointing the player (and consequently all weapons) correctly, we need to handle other input
commands: weapon switching, firing, and reloading. All these functions are handled through
WeaponController, which must be also added to player’s game object. This script is shown in Listing 84.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

241

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class WeaponController : MonoBehaviour {

5.

6.	 //Array of available weapons

7.	 public GeneralWeapon[] weapons;

8.

9.	 //Index of initially hold weapon

10.	 public int initialWeapon = -1;
11.

12.	 //Index of currently hold weapon

13.	 int currentWeapon;

14.

15.	 void Start () {

16.	 //Set current weapon to the initial value

17.	 //selected from the inspector

18.	 currentWeapon = initialWeapon;
19.	 //Update inHand variable of all weapons

20.	 RefreshInHandValues();

21.	 }

22.

23.	 void Update () {

24.	 UpdateSwitching();

25.	 UpdateShooting();

26.	 }

27.

28.	 void UpdateSwitching(){

29.	 //Convert the value of "1" key in alphabit
30.	 //section of the keyboard to int

31.	 int keyCode = (int)KeyCode.Alpha1;
32.	 for(int i = 0; i < weapons.Length; i++){
33.	 //Each weapon takes the number keyCode + weapon index
34.	 if(Input.GetKeyDown((KeyCode) keyCode + i)){
35.	 currentWeapon = i;
36.	 RefreshInHandValues();

37.	 }

38.	 }

39.	 }

40.

41.	 void UpdateShooting(){

42.	 //Mouse button down: Fire

43.	 if(Input.GetMouseButton(0)){

44.	 weapons[currentWeapon].Fire();

45.	 }

46.	 //Mouse button up: ReleaseTrigger

47.	 if(Input.GetMouseButtonUp(0)){

48.	 weapons[currentWeapon].ReleaseTrigger();

49.	 }

50.	 //Right click: Reload

51.	 if(Input.GetMouseButtonDown(1)){

52.	 weapons[currentWeapon].Reload();

53.	 }

54.	 }

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

242

Advanced Game Logic

55.

56.	 //Change weapon

57.	 public void SetCurrentWeapon(int newIndex){

58.	 weapons[currentWeapon].ReleaseTrigger();

59.	 currentWeapon = newIndex;
60.	 RefreshInHandValues();

61.	 }

62.

63.	 void RefreshInHandValues(){

64.	 foreach(GeneralWeapon gw in weapons){

65.	 //inHand must be true only for the

66.	 //currently hold weapon

67.	 gw.inHand = weapons[currentWeapon] == gw;
68.	 }

69.	 }

70.	}

Listing 84: A script to handle weapon switching, firing, and reloading

All weapons we use must be added to weapons array, so that they can be accessed by the script and hence
the player has the ability to switch between them. By default, initialWeapon is set to -1. After adding the
script to player’s game object and adding our three weapons to weapons array, we can set initialWeapon to
0, 1, or 2. The currently hold weapon is managed by the script internally through currentWeapon, so the
only way to change the current weapon is by calling SetCurrentWeapon() function. This is necessary to
make sure that RefreshInHandValues() is called each time we switch the weapon. The importance of this
function is that it guarantees having only one weapon that has true value for inHand. This weapon is in
fact the one in the index currentWeapon in weapons array. During each frame update, UpdateSwitching()
and UpdateShooting() are invoked.

UpdateSwitching() scans keyboard keys starting from KeyCode.Alpha1. KeyCode.Alpha1 is the key with
digit 1 found on the the upper left corner of the keyboard. If we convert KeyCode.Alpha1 to integer and
add 1 to it, we get an integer value equal to KeyCode.Alpha2. This fact is useful for us in scanning all
numeric keys using for loop instead of writing a specific if statement for each key. As a result, the key
with digit 1 matches the weapon in index 0 in weapons and so on. On the other hand, UpdateShooting()
reads input from mouse buttons. It calls Fire() function from the current weapon when the left mouse
button is pressed, and calls ReleaseTrigger() from the same weapon when the left button is released.
Additionally, it performs reload when the right mouse button is clicked. Our player object should now
look like Illustration 90.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

243

Advanced Game Logic

Illustration 90: Player game object configured completely

With this configuration of player’s game object, the input system of our shooting mechanism is complete.
We have now to deal with the output. Both rifle and sniper weapons can be implemented using ray casting.
Therefore, it is reasonable to reuse our RaycastShooter script in Listing 49 (page 128). All we have to do is
to add RaycastShooter to the game objects of rifle and sniper, set its properties (range, inaccuracy, power),
and make a “bridge” script that receives OnWeaponFire message from GeneralWeapon and eventually call
Shoot() function of RaycastShooter. This is a very simple script called WeaponToRaycast, shown in Listing 85.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

244

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(GeneralWeapon))]
5.	 [RequireComponent(typeof(RaycastShooter))]
6.	 public class WeaponToRaycast : MonoBehaviour {

7.

8.	 RaycastShooter shooter;

9.

10.	 void Start () {

11.	 shooter = GetComponent<RaycastShooter>();
12.	 }

13.

14.	 void Update () {

15.

16.	 }

17.

18.	 void OnWeaponFire(){
19.	 shooter.Shoot();

20.	 }

21.	}

Listing 85: Simple script that bridges between RaycastShooter and GeneralWeapon

Obviously, the script depends on both RaycastShooter and GeneralWeapon, which makes sense as its job
is to link these scripts together. Illustration 91 shows different RaycastShooter configurations we need
to set for both rifle and sniper.

Illustration 91: Different configurations of RaycastShooter for rifle (left) and sniper (right)

It is time to move back to our building blocks which we have used to build the walls in our scene. In
addition to being destructible, we need these blocks to be affected by ray cast bullets. First of all, we
need to create bullet holes on these walls. Therefore, we have to attach BulletHoleMaker script (Listing 52
page 133) to our ShootableBrick prefab, and provide the script with the prefab of the bullet hole we have
created earlier. Additionally, we have to remove MouseExploder script from the building block, because
we don’t want to have an explosion with each mouse click on the block.

To remove a component from a game object, click the gear icon on the upper left corner of the component and select
Remove Component from the menu.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

245

Advanced Game Logic

The next script we need to attach to our block is BulletForceReceiver (Listing 53 page 134), which allows
our weapons (rifle and sniper) to affect the block by moving it. Unfortunately, our block already has
Destructible script attached, which means that BulletForceReceiver is not going to have any effect unless
the block is destructed. Therefore, we need a script that destructs the block based on a ray cast hit with
enough power. The script we need is DestructOnHitDamage, which is shown in Listing 86.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(Destructible))]
5.	 public class DestructOnHitDamage : MonoBehaviour {
6.

7.	 //Minimum damage to destruct

8.	 public float destructionDamage = 250;
9.

10.	 Destructible dest;

11.

12.	 void Start () {

13.	 dest = GetComponent<Destructible>();
14.	 }

15.

16.	 void Update () {

17.

18.	 }

19.

20.	 void OnRaycastHit(RaycastHit hit){
21.	 //Hit damage is stored in distance

22.	 //if damage more than destructionDamage,

23.	 //then destruct

24.	 if(hit.distance > destructionDamage){

25.	 dest.Destruct();

26.	 }

27.	 }

28.	}

Listing 86: A script to receive ray cast hit and eventually destruct the attached destructible

All we have to do is to specify the minimum amount of damage that destructs the block. By calling
Destruct(), we remove all constraints that limit the movement of the block. As a result, AddForceAtPosition()
which is called by BulletForceReceiver is going to have its proper effect on the rigid body of the block and
move it. Our building block is now ready and the walls are affected by sniper and rifle bullets.

The last thing we need to take care about regarding output are RPG rockets. In this case we have to create
a rocket prefab that is launched when the RPG is fired. When this rocket hits a wall, it must cause an
explosion and consequently destroy the wall. To launch the rocket we need two parts: the rocket itself as
prefab, and the launcher as a script that responds to FireWeapon() message by instantiating the prefab.
Let’s begin with RPG script, which is responsible for instantiating the rocket. This script must be added
to the RPG weapon game object. Listing 87 shows RPG script.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

246

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class RPG : MonoBehaviour {

5.

6.	 //Prefab of rocket to launch

7.	 public GameObject rocketPrefab;
8.

9.	 void Start () {

10.

11.	 }

12.

13.	 void Update () {

14.

15.	 }

16.

17.	 //Simply receive the message and instantiate a rocket

18.	 //The rocket has initially the same position and rotation

19.	 //of the launcher

20.	 void OnWeaponFire(){
21.	 �GameObject rocket = (GameObject)Instantiate(rocketPrefab);
22.	 rocket.transform.position = transform.position;
23.	 rocket.transform.rotation = transform.rotation;
24.	 }

25.	}

Listing 87: RPG script to launch rockets based on general weapon

To represent RPG rocket, we are going to use a sphere that is stretched along its z axis so it look like
ellipsoid. For this example I am going to use the dimensions (0.2, 0.2, 0.75). We can give this ellipsoid
an arbitrary texture, and we have also to create a prefab out of it. Once we have the rocket prefab ready,
we set the value of rocketPrefab in RPG script to that prefab. This prefab needs, of course, a number of
components and scripts in order to behave as we wish. First of all, we need to add a rigid body component
to it. Now we have to think about what does the rocket do: 1) it is launched with a specific impulse
force, then hits the target. Once it hits the target, 2) it explodes and 3) blows the target as well. If the
target is destructible, it must be 4) destructed as well. Therefore, we need four scripts to perform these
four tasks. So let’s begin with the first task: launching and moving the rocket. This task is performed by
RPGRocket script shown in Listing 88.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

247

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(Rigidbody))]
5.	 public class RPGRocket : MonoBehaviour {

6.

7.	 //Force to apply upon launch

8.	 public float launchForce = 100;
9.

10.	 //Number of seconds to keep rocket alive
11.	 //in case it hits nothing

12.	 public float lifeTime = 7;
13.

14.	 //To calculate life time

15.	 float launchTime;
16.

17.	 //Internal state tracking

18.	 //Necessary to prevent collision detection
19.	 //between the rocket and its pieces

20.	 bool destroyed = false;
21.

22.	 void Start () {

23.	 rigidbody.AddForce(transform.forward * launchForce,

24.	 ForceMode.VelocityChange);

25.

26.	 launchTime = Time.time;
27.	 }

28.

29.	 void Update () {

30.	 if(!destroyed && Time.time – launchTime > lifeTime){
31.	 Destroy(gameObject);
32.	 }

33.	 }

34.

35.	 void OnCollisionEnter(Collision col){
36.	 if(!destroyed){

37.	 destroyed = true;
38.	 //Inform other scripts on the rocket about the hit

39.	 //and provide a reference to the colliding object

40.	 SendMessage("OnRocketHit",
41.	 col.collider,

42.	 SendMessageOptions.DontRequireReceiver);
43.

44.	 //Destroy rocket object

45.	 Destroy(gameObject);
46.	 }

47.	 }

48.	}

Listing 88: A script to launch the rocket and detect its collision with other objects

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

248

Advanced Game Logic

The script starts by giving the rigid body of the rocket a force with enough magnitude to launch it.
After that it starts to compute the life time of the rocket as set in the inspector. However, if the rocket
hits an object during its movement, it destroys immediately after sending OnRocketHit other scripts and
providing a reference to the colliding object. Notice that we count for the case of multiple collisions, and
hence use the internal destroyed flag. By doing this, we guarantee that OnRocketHit is sent only once.
After hitting the target, the rocket must explode into pieces. For this purpose, we can reuse Breakable
script (Listing 59 page 150) with a custom piece prefab. However, we need to set a high value, such as
1000, for explosionPower variable. The reason for that is the fact that the rocket does not simply break,
but rather explode. This means that its pieces must be scattered appropriately to mimic an explosion,
which needs a force with high magnitude.

To break the rocket upon collision with another object (the target), we need a third script to link
RPGRocket and Breakable. The script has to receive OnRocketHit message and eventually send Break
message to the breakable. This script is BreakOnRocketHit shown in Listing 89. This is a straightforward
script that does nothing other than receiving a message and sends another one.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(RPGRocket))]
5.	 [RequireComponent(typeof(Breakable))]
6.	 public class BreakOnRocketHit : MonoBehaviour {
7.

8.	 void Start () {

9.

10.	 }

11.

12.	 void Update () {

13.

14.	 }

15.

16.	 void OnRocketHit(Collider hitObject){
17.	 GetComponent<Breakable>().Break();

18.	 }

19.	}

Listing 89: A script to link RPGRocket and Breakable

The last script we have to add to rocket prefab is in fact the explosive material which does the real
destruction and causes explosions. When OnRocketHit message is received, all destructible blocks in
explosion range must be destructed and an explosion force must be added to it. The script that performs
this task is DestructOnRocketHit, which is shown is Listing 90.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

249

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class DestructOnRocketHit : MonoBehaviour {
5.

6.	 //Radius of rocket explosion

7.	 public float explosionRadius = 3;
8.

9.	 //Force of the explosion

10.	 public float explosionForce = 50000;
11.

12.	 void Start () {

13.

14.	 }

15.

16.	 void Update () {

17.

18.	 }

19.

20.	 void OnRocketHit(Collider target){
21.	 //Destruct all destructible blocks in range

22.	 //and add explosion force to them

23.	 Destructible[] all = FindObjectsOfType<Destructible>();
24.

25.	 Vector3 explosionPos = transform.position;
26.

27.	 foreach(Destructible dest in all){

28.	 if(Vector3.Distance

29.	 (explosionPos, dest.transform.position)

30.	 < explosionRadius){

31.

32.	 dest.Destruct();

33.

34.	 dest.rigidbody.

35.	 AddExplosionForce(explosionForce,

36.	 explosionPos,

37.	 explosionRadius);

38.	 }

39.	 }

40.	 }

41.	}

Listing 90: A script to destruct and explode nearby destructible objects upon rocket hit

You might have noticed similarities between this script and MouseExploder script (Listing 57 page 145).
What is special in DestructOnRocketHit that it takes the position of the rocket as the position of
the explosion.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

250

Advanced Game Logic

All weapons are now functional and can be controlled by the mouse. Additionally, it is possible to
switch between these weapons using keyboard number keys 1, 2, and 3. The final function we need to
implement is the display of ammo count and reload progress. If you refer to Illustration 88, you will
notice a text mesh that says “(amm)” next to each weapon name. We are going to use each one of these to
display data about its weapon. If the weapon is not currently in hand, the text “XXX” must be displayed.
This method informs the player directly which weapon he is currently holding in hand. However, if
the weapon is currently in hand, the number of remaining magazines as well as magazine size and
magazine capacity must be displayed. For instance, we can use the format magazineSize/magazineCapacity
(x magazineCount). Finally, if the weapon is reloading, the progress must be displayed as percentage.

To control the display, we need to attach a script to each weapon that continuously reads ammo data
and updates the display accordingly. This script is AmmoDisplay, which is shown in Listing 91.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

251

Advanced Game Logic

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 [RequireComponent(typeof(GeneralWeapon))]
5.	 public class AmmoDisplay : MonoBehaviour {

6.

7.	 //Where to display data

8.	 public TextMesh display;

9.

10.	 //The weapon to display data for

11.	 GeneralWeapon weapon;

12.

13.	 void Start () {

14.	 weapon = GetComponent<GeneralWeapon>();
15.	 }

16.

17.	 void LateUpdate () {

18.	 //Do not show if weapon is not in hand

19.	 if(!weapon.inHand){

20.	 display.text = "XXX";
21.	 return;

22.	 }

23.

24.	 float reloadProgress = weapon.GetReloadProgress();
25.	 //Show number of bullets and magazines remaining

26.	 if(reloadProgress == 0){
27.	 display.text = weapon.magazineSize + "/" +
28.	 �weapon.magazineCapacity + " (x" +
29.	 weapon.magazineCount + ")";
30.	 } else {

31.	 //If reloading, show reload progress

32.	 int progress = (int)(reloadProgress * 100);
33.	 display.text = "RLD " + progress + "%";
34.	 }

35.	 }

36.	}

Listing 91: A script to display weapon data in text format

It is important to notice that we use GetReloadProgress() function to know whether the weapon is
reloading. If this function returns zero, it means that no reloading is currently in progress. In this case,
we display the ammo. However, if this function returns a value other than zero, this value is in fact the
progress of reloading expressed in a value between 0 and 1. If we multiply the returned value by 100
then convert it to integer, we get a progress value that is neat to display. Illustration 92 shows a screen
shot of the final scene. A complete demo can be found in scene22 in the accompanying project.

http://bookboon.com/

A Practical Introduction to
3D Game Development

252

Advanced Game Logic

Illustration 92: Weapon switching and reloading demo

Exercises

1.	 Create a physics door (using hinge joint) that needs two collectable keys to be opened. You
can either modify existing scripts used in section 5.1 or write your own scripts to implement
the functionality.

2.	 Create an unlock puzzle that depends on placing three boxes at specific positions on the ground.
When the player pushes these boxes to their correct positions, a sliding door opens automatically.

3.	 Write a script that randomly drops health packs for the player in the game we developed in
section 5.3. Each health pack increases player’s health by 15, and the player must touch the health
pack to collect it. However, if a projectile hits the health pack it must be destroyed immediately.

4.	 Add grenade weapon to the demo in section 5.4. When the player clicks the mouse, a grenade
must be thrown to the direction where the mouse points. This grenade must explode after 7
seconds and destruct any destructible objects in its specified range of effect.

